
AD-A257 534 ___

III~~i~ PAGE~I I II li Form Approved
I~ PAEO MB No. 0 704 -0 188

..gburden for this cogtWi~ar at informnaliof it "ostiratd to average I hour por reponse. induchng thel, forn jovtitivng alnifrcitors. eagrehingcsitfing dad seutwec. gathering and
vgIt's dala needed, and wrrvtating and fevietlitig the eColtdion of tntoninatlon. Send Continenlts regarding this burden estirrnate or any otheraso lapt thi tte ciffedlorn a, hItomtiaton.

* lestiors ltr redmcing this bWiden. to WaShingtlon Hs"eadrarrale SgevLS. Difectofate tot 1010fritatrost Operationse and Reports. 1215 Jeftferon Davie Htgh~ory. Sutie 1204. Arlington.
1A302. &no to the Office 04 Managenters and Budgst. Pacemwosi, Reducion Pboled 10704-0188), Weashington. DC 205M.

A .;ENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IOctober 1992 J Special Technical
4. 1ITLE AND SUBTITLE 5. FUNDING NUMBERS

Monitoring and Controlling Distributed Applications
Using Lomita (Position Paper)

NAG 2-593
6. AUT1IOR(S)

Keith Marzullo and Ida M. Szafranska

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Keith Marzullo, Assistant Professor
D)epartment of Computer Science
Cornell University 92-1306

9PONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

I,* ~P/I5TOAGENCY REPORT NUMB

ii. SIJPPLEMENTARY NOTES ,j\4

a ISTRIBUTION/AVAILABILITY STATEMENT T12b. DISTRIDtJTION CODE

~j1,~W3UIONUNLIMITED - _______________
S TRACT (MAlximumn 200 words)

P *!ase see page 1 of the report.

3,16CT TERMS IS. NUMBER OF PAGES

7

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION III. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIlS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
?iSN 754O-0t2MO$SO Standawd Form 290 (ttev. 2 8I%

Prescribed Itt ANSI Sid. fl- It

Monitoring and Controlling
Distributed Applications Using Lomita*

(Position Paper)

Keith Marzullo
Ida M. Szafranska

Accesion For
TR 92-1306

October 1992 NTIS CRA&I
DTIC TAB
U,ian2nouriced []
Jislification

By ---- -------------------------

Dibt, ibJtion/

Avaiiability Codes

Avail anid I or
Dist Special

Department of Computer Science
", " Cornell University

92" Ž28925 Ithaca, NY 14853-7501

*This work was supported by the Defense Advanced Research Projects Agency

(DoD) under NASA Ames grant number NAG 2-593, Contract N00140-87-C-8904,
and by grants from IBM T.J. Watson, IBM Endicott, Xerox Webster Research Center
and Siemens RTL. The views, opinions and findings contained in this report are those
of the authors and should not be construed as an official Department of Defense
position, policy or decision.

92 1.

Monitoring and Controlling Distributed Applications using Lomita*

POSITION PAPER

Keith Marzullo Ida M. Szafranska

Cornell University
Department of Computer Science

Ithaca, NY 14853-7501

16 October 1992

Over the last four years, we have developed the program for a load-adaptable service.
Meta toolkit for controlling distributed applica-
tions. This toolkit has been publically available
as part of the academic ISIS release, and has 1 Review of Meta
been used both within and outside of Cornell for A reactive system architecture partitions the svs-
building various system monitoring and control ter into two components: an active environment

applications [5, 3, 4]. and an input-driven control program. The con-

One major stumbling block with using Meta trol program monitors the state of the environ-
has been the language (called NPL) it supports. ment through a sensor abstraction, and when thie
NPL is very low-level and using it is difficult, state meets some condition then it alters the en-
in the same way it is difficult to write machine vironment's state through an actuator abstrac-
language programs or raw Postscript programs. tion. Process control systems naturally have a
Hence, we have spent the last six months build- reactive architecture, as does system and net-
ing a higher-level language and runtime environ- work monitoring, software tool integration, de-
ment. Our hope is that with this higher-level bugging, and automatic system management.
approach, we will be able to write more compli- The Meta toolkit assists in the construction of
cated Meta applications and thereby concentrate distributed and reliable (albeit non-real-time) re-
more on the use (and limitations) of Meta as an active systems. With Meta, one can instruimient
architecture. a program with software sensors and actiators

This note proceeds as follows. In Section 1, we in order to expose its state for control. Then. a
review the Meta toolkit and its intended use. In control program can be written to monitor and
Section 2 we describe our goals with Lomita and control the instrumented programs. The ýNlta
give an overview of its architecture and language architecture interprets the control prograin in a
syntax. In Section 3 we give a detailed example distributed manner in order to supply hot h lower
of the use of Lomita by presenting a complete latency and tolerance to partial failures of the"

"*This work was supported by the Defense Advanced environment. Furthermore. the inonitoring and

Research Projects Agency (DoD) under NASA Ames control is done in a way to guarantee that t Hie

grant number NAG 2-593, Contract N00140-87-C-8904, observed global state is consistent and chnanmod
and by grants from IBM T.J. Wat-on, IBM Endicott, atomically with respect to the inonitorin.g of Hie
Xerox Webster Research Center, and Siemens RTL. The control program.
views, opinions, and findings contained in this report are
those of the authors and should not be construed as an of- For example, consider a simple comnputat oin

ficial Department of Defense position, policy, or decision. server that accepts jobs and execut.es thnem in

the order received (the pending job requests are Instrumented programs define what is called
kept in a queue). The load of a server is the in Meta base contexts. Base contexts can be
estimated time needed to complete all submitted grouped into group contexts1 . Put another way,
jobs. As well as being submitted, a job can be a group context class can be defined as a col-
cancelled and the server can be stopped (losing lection of contexts from the same base context
all submitted jobs). class, and a base context can join and leave any

This server can be instrumented with a sen- number of group contexts of a compatible class.
sor that gives the load of the server and a sensor Each sensor of the base context class exists in
that gives the queue of submitted jobs. It can the group context class except that the type of
also be instrumented with two actuators: one the sensor is promoted to a set value. For ex-
that cancels a job and one that stops the server, ample, assume that service(1) is a group context
Then, Meta can be used to construct a service class comprised of serv contexts. If tile load sen-
out of servers-for example, an actuator can be sor in the context class serv has an integer type.
defined that submits a job to the lightest-loaded then service context class also has a load sensor
server of a group of servers, and a sensor can be but its type is set of integers. The value of this
defined that gives the average load of a set of sensor in some group context is the set of load
servers. And, a control program can be written sensor values, one for each base context that is a
that creates additional servers on lightly-loaded member of the group context.
machines when the average load is too high. Sec- Similarly, the actuation of service(1).stop will
tion 3 develops this example more fully. actuate serv(x).stop for every serv(x) that is a

There are two steps to managing a distributed member of service(1), and the value of the actua-
application with Meta: instrumenting the appli- tion is success if all base actuations succeed; else

cation and writing the control program. Instru- the value is failure. Actuators in group context
mentation is the more straightforward task. A classes can also take two additional parameters:
Meta sensor or actuator is simply a procedure a positive integer and a set of values obtained
that is added to the application, where a sensor from a sensor of the group. The first parameter
has no side-effects and an actuator changes the specifies a number k of base contexts and the sec-
state of the application and returns success or ond parameter specifies a preference ranking r of

failure. These procedures are registered with the base contexts indicated by the source of the
Meta using a library routine, which also asso- individual value. The actuation will invoke the
ciates a name and a type signature with the sen- actuator on the first k contexts denoted by r. For
sor or actuator. Finally, Meta has a set of Ui- each that returns failure, an additional context
brary routines that synchronizes the sampling of is chosen from r. The group actuation will return
sensors and invocation of actuators with its own success if k base contexts return success. For
operation in order to guarantee that Meta sees example, service(1).shutdown(2, sort(load)) will
and alters on only locally consistent states. shut down the two lightest-loaded servers that

An instrumented program is an example of a are members of service(1).

Meta context, that is, a named set of sensors and Control programs are written in a simple pro-
actuators. In Meta, each context belongs to a gramming language called NPL. An NPL coin-

single context class that defines the types of its mand is equivalent to a)tomic guarded con-
sensors and actuators. For example, if we as- m i is a p ep si o n where ea "
sume that only one computation server will be a c is a presicate expression over sensor vvaios
run (,n any given machine, then the load sen-
sor of a computation server running on a ma-
chine grimnir could be named serv(grimrlr).load, is somewhat confusing in terms of contexts ain context

where the context is named serv(grimnir) and is classes, however, and so we use the (hopefully clearer)

of a context class named serv. Lomita terminology here.

2

whose parameters can be expressions of sensor tax and supporting semantics in order to make

values. The meaning of such a command is that Meta usable.
it blocks until some Oi is true, at which point the The central idea of Lomita is to fully in-
corresponding ai executes, and any effects of ai plement the context class abstraction. Rather
are not visible to other guarded commands until than submitting NPL programs to contexts, one
ai terminates. Such commands can be one-shot writes a description of the context classes which
(once an ai executes the command terminates) includes a set of atomic commands (in a syn-
or iterative (once an ai executes the command tax much more readable than NPL). The Lomita
resumes waiting for a predicate to become true). runtime system then ensures that contexts are
Meta also guarantees that an NPL command ob- initialized and recovered with the appropriate
serves a valid sequence of global states. That is, NPL commands.
not only is each global state used to evaluate a Lomita consists of two parts. First, there is
Oi a valid global state [1], but the sequence of a compiler that takes Lomita programs ard pro-
states is also consistent with the actual run of duces an object file. Second, there is a replicated
the environment [2]. fault-tolerant service called the Lomita runtime

Each context has associated with it an inter- that, when given a Lomita object file, loads the
preter of NPL commands. For base contexts, file into an internal database. The runtime moni-
the interpreter resides in the same address space tors the currently active contexts and downloads
as the instrumented program. An NPL com- the relevant NPL commands from its internal
mand can be run in any interpreter (that is, an database when necessary. The runtime also cre-
NPL program using fully-qualified names can be ates interpreters for group contexts when they
submitted to any context without changing its are needed.
meaning), although the latency due to network A Lomita program consists of a set of context
communication is large-a command may run up class definitions. Each context class definition
to 500 times slower in a remote context than in specifies the attributes of the context class and
a local context. Of course, some programs re- lists the rules to be run in each context of that
fer to more than one context and so must refer context class. Attributes can either be Mleta sen-
to some remote sensor or actuator no matter in sors or actuators, they can be functions or they
which context they are run. can be the Lomita key construct.

Interpreters for group contexts are created by The example in Section 3 gives several context
informing an interpreter that it should also im- class definitions. For example, the definition of
plement the group context. For example, the the machine context declares that there is an in-
interpreter for serv(grimnir) can be told to also strumented program that supplies sensors on the
implement the service(l) context. In addition, load of the machine and on who is logged in. anl
more than one interpreter can be so informed, extends this context class with somen additional
in which case they run in a replicated mode- seve thughan ntepreer all, te cntet wllsensors, such as when the machine is to he con-
even though an interpreter fails, the context will sidered "busy". The definition also contains a
remain accessible and the NPL commands it is single rule that initializes a value by invoki lu
running will continue to run. the "stop-server" actuator.

There are three different kinds of context

2 Lomita classes that can be declared in a Lomuita pro-
gram: the global context class, base context

Although Meta is a powerful system, it is ex- classes, and group context classes,. lac'h con-

tremely awkward to use. The NPL programs one text class defines a set of attributes and |'hles
writes for even simple control programs are very that apply to all contexts of that class. Base

hard to read and to validate their correctness. context classes and group context classes corre-
Our goal with Lomita is to provide enough syn- spond with their equivalent in NMeta. Th, global

context class contains a single context, called the free-machines: machine group

global context. The attributes defined in the attributes
global context are available in all contexts. For key gp: string

example, every context has its own print actua- end
tor, and so print is defined as an actuator of the with type

global context. select when ! busy
Lomita rules has the following syntax: remove when busy

if timer(10000)
if/when predicate expression do print (name,

do sequence of actuator invocations end d hasee

[else if/when predicate expression end

do sequence of actuator invocations end]* end

By default, a Lomita rule is translated into The key for the group is the value of the type
an iterative guarded command, but a program-
mnitercantopiteguarationmand, busgthe et pac- sensor, which yields the type of instrumentedm e r can stop iteration by using the exit actu- m a h n . H ce t is o t xt l ss p r t o s

ator. The difference between "if" and "when" machine. Hence, this context class partitionscorespndsto heter he ctin i enble inmachines into group contexts all containing thecorresponds to whether the action is enabled in s m y e o a h n . T e r l n t e w tsame type of machine. The rule in the with
any state satisfying the predicate expression or statement is run in each machine context that
only in a state in which the predicate becomestrue Fo exaple th Lomta uleis a member of a free..machines context--in this

case, a free machine will print every ten secot,ds

when "marzullo" in login that it is a free machine.

do print("watch out!") end

prints the message "watch out!" once after each 3 Example
time "marzullo" logs in, while the rule

The following is a complete Lomita 1.0 program.
if "marzullo" in login The program serv services a simple request for

do print("watch out!") end computation (the computation is given a name
and an estimated amount of time). Aul in~tru-

continuously prints the message "watch out!" as mnd serverei amembe of the Aonteca
longas "arzulo"is lggedin.mented server is a member of the context tins:,long as "marzullo" is logged in.

Group context classes can also specify rules serv, and the context is named by the machine it
that are to be run in the base context of all mere- runs on (e.g., serv(ydalir)). Servers are grouped

bers of a group. Such rules are specified by a into twogroups-the group of all servers. and tle

with statement, which has the following syntax: group of servers that are not overloaded (called
free-servers). Furthermore, the new actuator

with expression/all addi defined in free-servers submits a job-to the
[select when predicate expression / lightest-loaded free server.
remove when predicate expression / A set of rules, associated with the group of all

rule]* end servers, governs the number of server replicas.
These rules specify that thle numlber of rel)lica.•

The expression following the with keyword is must be bten in e nd ofxrepuica.,

called the key expression and when evaluated in
more, if thle average load of the .erver.s i.s too

the base context, yields the value of the key as- high, then a new server is created, ald if the av-

sociated with the group context. A select state- hige a ne server is toolo and th, a

ment generates a rule for joining the group and erage load of the servers is too low a(t ,here 'is

remove generates a rule for leaving the group.

For example, consider the following definition of #define high-load 5.0
a group of machines: #define max-users 2

#define dally 30 sensor alive: boolean
*define max-load 30 sensor queue: {string}
fdefine min-load 2 sensor overload: boolean:=
*defin.e max-rep 5 load > max-load
#define min-rep 1 actuator add (
*define servcmd "/usr/meta/utils/serv v' job-name: string, job-time: string)
#define has-server getl actuator remove (job-name: string)
*define set-has-server set(l, TRUE) actuator shutdown
8define set.no-server set(l, FALSE) actuator stop:= shutdown;

machine(name).stop-server
#define wait-new-size getl end
#define set-neovsize set(l, TRUE) end
#define reset-new-size set(l, FALSE)
#define last-nservers get2 /* all machines that aren't busy */
#define set-nservers set(2, num-servers) freemachines: machine group

attributes
global attributes key not-needed

sensor geti: boolean sensor mean-load: real:= avg(load)
sensor get2: integer sensor num-freemachines:= size(alive)
function avg (any): any actuator start-server (
function sort ({any}): {any} number: integer, pref: any)
function timer (integer): boolean end
function select.eq.int (with all

{integer}, integer): {integer} select when ! busy
actuator exit remove when busy
actuator set (integer, any) if timer(dally*lOO0)
actuator print (any) do print(
actuator shell (any) name,
end " has been free for ",

dally, " seconds.") end
machine: base end

attributes end
key name: string
sensor load: real /* all servers that aren't overloaded */
sensor alive: boolean /* actuator addl submits job to lightest */
sensor busy: boolean:= load > high-load /* loaded server. */

11 size(login) > max-users freeservers: serv group
H has-server attributes

sensor login: {string} key not-needed
actuator exec (cmd: string) sensor num-freeservers:= size(alive)
actuator start-server:= actuator add (

exec(serv-cmd); number: integer, pref: {integer},
set-has.server; job-name: string, jobtime: string)
leave("freemachines") actuator addl (

actuator stop.server:= set-no-server jname: string, jtime: string):=
end add (1, sort(load), jname, jtime);

if true do stop-server; exit end end
end with all

3elect when !overload
serv: base remove when overload

attributes end
key name: string end
sensor load: integer

/* All servers. Create a server if the */ Distributed Systems. ACM Transactions on
/* average load is too high, and destroy */ Computer Systems, 3(1):63-75 (February
/* an idle server if the average load is */ 1985).
/* too low. */
servers: serv group [2] K. Marzullo and G. Neiger. Detection of

attributes Global State Predicates. Proceedings of the
key not.needed Fifth Workshop on Distributed Algorithms
sensor nuadservers:= size(alive) and Graphs (Springer-Verlag LNCS 579) pp

nuabor: integer, pref: (integer), 254-272. Delphi, Greece, October 1991.

job-name: string, job-time: string) [3] K. Marzulo and M. Wood. Tools for Dis-
actuator stop (

number: integer, pref: {integer)) tributed Application Management. In Pro-
end ceedings of the Spring 1991 EurOpen Con-
with all select all end ference, Tromso, Norway, May 1991, pp

185-196.
if true do set-newtsize; exit end
when nuin-servers <> last-nservers [4] K. Marzullo and M. Wood. Tools for Man-

do setnservers; setnevsize end aging and Controlling Distributed Appli-
cations. Cornell University Department of

if wait...new..>size Computer Science TR 91- 1187 (February
kk (froemachirves.num.freemachines > 0) 1991, submitted for journal publication).
U (num...servera == BOTTOM

II nun-_servers < min-rep [5] K. Marzullo, M. Wood, K. Birman and R.
II (avg(load) > max-rload Cooper. Tools for Monitoring and Control-

do froomachinos.start-server(ling Distributed Applications. IEEE Coin-

1, sort(load)); puter 24(8): 42-51 (August 1991).
reset-new-size end

if waitnewsize
U (numnservers > max-rep

I1 (avg(load) < min-load
kk num-servers > min.rep))

do stop(l, select-eq.int(load, 0));
reset-new-size end

end

Acknowledgements Mark Wood was the co-
designer and principle software architect of the
original Meta system. Tim Clark designed and
built the Lomita runtime system, and Sue Honig
designed and built the interface between Lomita
and Meta. Ken Birman, Robert Cooper and
Fred B. Schneider have all contributed ideas to
both Meta and Lomita.

References

[1) K. M. Chandy and L. Lamport. Distributed
Snapshots: Determining Global States of

6

